What is a Robot?

- a mechanism guided by automatic controls
- a device that automatically performs complicated often repetitive tasks
- a machine that looks like a human being and performs various complex acts (as walking or talking) of a human being; also a similar but fictional machine whose lack of capacity for human emotions is often emphasized

Is This a Robot?
How ‘Bout Now?

What is a Robot?

- a mechanism guided by automatic controls
- a device that automatically performs complicated often repetitive tasks
- a machine that looks like a human being and performs various complex acts (as walking or talking) of a human being; also: a similar but fictional machine whose lack of capacity for human emotions is often emphasized

We Can All Agree on This Guy
What is a Robot?

- a mechanism guided by automatic controls
- a device that automatically performs complicated often repetitive tasks
- a machine that looks like a human being and performs various complex acts (as walking or talking) of a human being; also: a similar but fictional machine whose lack of capacity for human emotions is often emphasized

But What About This Guy?

- Automatically Performs Complex Tasks
- Repetitive Actions
- Looks Like a Human
- Has Mechanical Sensors

...And What About This Guy?
Mind Children

Hans Moravec

Robot: Mere Machine to Transcendant Mind

Moore’s Law

Essential Ingredients of Robots

- **Perception**
 - A Robot must be able to Sense the World
- **Cognition**
 - A Robot must be able to React to those Sensations
- **Manipulation**
 - A Robot must be able to Affect the World

Carnegie Mellon University, Robotics Institute
Welcome to Intro to Robotics

- **Lecture Course**
 - 3 credits
 - ENGR 3730
 - Homeworks, Exams
- **Lab Course**
 - 1 credit
 - ENGR 3731 (3800)
 - Labs, Projects
- Not required to take both

This is Our Goal

More Logistics

- **Class Meets**
 - MW 7:00 – 8:30
 - Room: here
- **Final Exam is planned**
- **Lab Meets**
 - Th 5:00 – 8:00
 - Room: CMK 100
And Still More Logistics

- Web Page is Your Responsibility
 - http://www.engr.du.edu/richard/Classes/ENGR3730/index.html
- Matlab or C programming
- Grading subject to change
 - Always ask how you’re doing

And the Un-Fun Part

- Academic Dishonesty
 - Not tolerated
 - Flunk the course, period
- What is plagiarism?
 "In short, to plagiarize is to give the impression that you have written or thought something that you have in fact borrowed from another."

What Do I Do?

- Self-Adaptation
 Byung Hwa Kim
 Colin D’Souza
 Nohhyun Park
 Prof. Stergios Roumeliotis
 "Both SW and HW Self-Adaptation"

- Applications
 - Planetary Exploration
 - Search and Rescue
 - Surveillance
 - Locomotion
 - Rubbled Terrain
 - Multiple Modes
 - USAR Amy Larson
 - Jaewook Bae

- Byung Hwa Kim
 Nohhyun Park
 Colin D’Souza
 Prof. Stergios Roumeliotis
CRAWLER Scout Video

Mechatronic Systems that See and Feel – Richard Voyles

Microassembly at the Planar Scale
- Precision Attachment (solder, UV epoxy)
- Stacked MEMS Devices

Programming by Human Demonstration
- Task Expert vs. Programming Expert
- Machine Learning
- Self-Calibration

Search-and-Rescue Robots

Mobile Manipulation
- Intelligent Kitchen
- Assistance to Elderly and Handicapped
- User Interfaces

The Works Museum Robot

- Planar
- Simple cuts (can be created on a table saw)
 - Inexpensive
 - Easy to replace parts
- Easy access to inner parts
- Very sturdy
This is Our Goal

Outline

- Robot Control (Ch 9)
- Trajectory Generation (Ch 7)
- Transformations (Ch 2)
- Kinematics (Ch 3)
- Inverse Kinematics (Ch 4)
- Jacobians (Ch 5)
- Dynamics (Ch 6)
- More Trajectory Generation (Ch 7)