Introduction

- Today it is common for a part to be designed in one country, manufactured in another and assembled in a third.
- This can be done efficiently with engineering communication via drawings.
- Engineering drawings communicate product design and manufacturing information in a reliable and unambiguous manner regardless of language.
- Information in engineering drawings are a legal specification that carry a binding contract.
Standards

- Engineering drawings are a language in its own right
- As in any language certain rules (or standards) must be followed
 - Defines how shape and form of object is to be represented [i.e., the order of orthographic views and different line types]
 - Defines how the part is to be dimensioned and tolerated
- Standards are updated on a 5 year basis

BSI - British Standards Institute
ANSI - American National Standards Institute
DIN - Deutsches Institut für Normung
ISO - International Standards Organization

Engineering Drawing Requirements

- Unambiguous and clear
 - [only one interpretation possible]
- Complete
 - [Provide all information for all stages of manufacture. i.e., detailed drawings, assembly drawings, bill of materials]
- Suitable for duplication
 - [Suitable scale and clarity that the drawing can be copied – even micro copied – without losing quality]
- Language independent
 - [Words dependent on a language should only be used in the title block; words should be replaced by symbols]
- Conforms to standards
 - [Highest standards are ISO as numerous countries learn these rules]
Types of Drawings

- **Design Layout Drawing**
 - Represents broad principles of feasible solution

- **Detail Drawing**
 - Single part drawing containing all information for fabrication

- **Assembly Drawing**
 - Shows how individual parts are combined, refers to parts list

- **Arrangement Drawing**
 - Shows finished arrangement of assemblies, includes functional and performance requirements

- **Diagram**
 - Drawing depicting the function of a system

- **Parts List [Bill of Materials]**
 - A parts list including material, number and provides reference number

- **Drawing List**
 - Cross references drawings that all combine to produce a single product

Layout

- Conventional ‘A’ sizes of drawing paper
- Blank drawing sheets contain the following
 - Title block
 - Includes organization, drawing number, title, date, name of draftsman, scale, copyright, projection symbol, units, reference to standard, sheet number, number to total sheets
 - Frame
 - Centering marks
 - Orientation marks
 - Metric reference graduation
 - Grid reference
 - Trimming
Illusions

- Despite rules in defining a language, whether spoken or drawn, errors can be made
- 3-D objects presented in 2-D paper can lead to confusion and even illusion
- Engineering drawings ignore perception by representing objects in orthographic projections [series of 2D images on 2D paper]

Projection Methods

- Isometric projections
 - Represents how a 3D object appears on 2D paper using three equal angles
 - Useful for giving manufacturers some perception of the object, but not used to convey manufacturing information

- Orthographic projections
 - Front face always parallel to frame, projections are perpendicular therefore receding faces are not seen
Orthographic Projections

- Third Angle Projection
 - Plane View
 - Left side view
 - Front view
 - Right side view
 - Rear view

- First Angle Projection
 - Left side view
 - Front view
 - Right side view
 - Rear view

Sectional Views

When parts have complex internal geometries knowing the interior is as important as knowing the exterior
Number of Views

- Maximum 6 views
- Minimum 3 views
- Typical 4 views
- Central view is always the front view

- Engineering drawings can be produced by hand or by computer
- We will begin with hand drawings for two weeks then move into computer aided drawing