ENGR 1611 – Concepts I

Topic: Wheel, Screws, Gears
Thursday 3rd week

Outline

• Wheel and Axle
 • Mechanical advantage

• Screw
 • Mechanical advantage

• Gears
 • How do they work?
 • What is a gear ratio?
 • How does the gear ratio effect torque?
 • How does the gear ratio effect speed?
Wheel and Axle

• Moment balance

\[\sum M_o = 0 \]

Moment = \(r \times F \)

CW moments = CCW moments

Wheel and Axle – Mech. Advantage

• Measure of the ability of a machine to amplify force
• Analogous to a lever

\[
\text{M.A.} = \frac{\text{Resistance (Force)}}{\text{Effort (Force)}}
\]

\[
\text{M.A.} = \frac{\text{Effort Arm}}{\text{Resistance Arm}}
\]
Exercise

- The diameter of the axle is 5”
- The handle moves through a diameter of 12”

How much force must be applied to lift a 75 lb bucket?

What is the mechanical advantage?

Screw

- Common applications – car jack, vice
- Screw pitch = distance between threads
Screw

Resistance

Effort

Screw - Mechanical Advantage

- Measure of the ability of a machine to amplify force

\[M.A. = \frac{\text{Resistance (Force)}}{\text{Effort (Force)}} \]

\[M.A. = \frac{\text{Distance Effort moves}}{\text{Distance Resistance moves}} = \frac{2\pi r}{p} \]

where \(p \) = pitch and \(r \) = radius
Exercise

• Your car has a flat tire.
• Your car weighs 1900 lbs.
• If you can exert a force of 75 lbs at a radius of 8 inches

What screw pitch on the jack is required to lift the car?

What is the mechanical advantage?

Gears

• Some examples include
 • Can opener
 • Cork screw
 • Transmission on your car
 • Bicycle

• Gears are used to
 • Change the direction of motion
 • Increase or decrease speed
 • Increase of decrease torque

• Gears are commonly used in power transmission applications because of their high efficiency (~98%)
Gears Configurations

• Spur gears
• Planetary and orbital gears
• Rack and pinion gears
• Bevel gears

Gear Ratio

• A gear will rotate with an angular velocity (ω) with units of radians/second

• Gears have teeth that must mesh
 • Same pitch = same distance between teeth
 • There is a fixed ratio between the teeth and the gear radius

$$\frac{N_1}{N_2} = \frac{r_1}{r_2}$$

N = Number of teeth (defined as T in your reading)
Gear Ratio - Velocity

- Velocity of pitch point C on both bodies must be equal

\[V_C = r_1 \cdot \omega_1 = r_2 \cdot \omega_2 \]

\[\frac{\omega_2}{\omega_1} = \frac{r_1}{r_2} = \frac{N_1}{N_2} \]

\(\omega = \text{angular velocity (defined as } s \text{ in your reading)} \)

Gear Ratio - Torque

- Force of gear 1 on gear 2 is equal and opposite to force of gear 2 on gear 1

\[F = \frac{T_1}{r_1} = \frac{T_2}{r_2} \]

\[\frac{\omega_2}{\omega_1} = \frac{r_1}{r_2} = \frac{N_1}{N_2} = \frac{T_1}{T_2} \]

\(\omega = \text{angular velocity (defined as } s \text{ in your reading)} \)
Gear Problems

- Master Equation
 \[\frac{\omega_2}{\omega_1} = \frac{r_1}{r_2} = \frac{N_1}{N_2} = \frac{T_1}{T_2} \]

- Small gear to large gear
 - Slower angular velocity, increased torque
- Large gear to small gear
 - Faster angular velocity, reduced torque

What are the gear ratios?

Let:
- \(r_{\text{green}} = 6 \) inches
- \(r_{\text{blue}} = 10 \) inches
- \(r_{\text{red}} = 15 \) inches
- \(\omega_{\text{green}} = 10 \) rad/sec

What is \(\omega_{\text{red}} \)?

Is \(T_{\text{red}} \) < or > \(T_{\text{green}} \)?