ENGR 1611 – Concepts I

Topic: Work and Power

Thursday 5th week

Mid-Term Evaluation

Lengsfeld’s results

• Lengsfeld does well at …

• Lengsfeld does terrible at
Outline

• What is work?
• What is power?
• What is efficiency?
• Why are these variables important?

Work

Work = Force \cdot Distance
Work

• No work is done if
 • the object is stationary
 • the force is perpendicular to the distance moved

• Units of Work
 • m·N = Joule SI System
 • ft·lbs US System

Work

\[\text{Work} = \text{Force} \cdot \text{Distance} \]

What is the Work? What is the Force?
Work

Work = \text{Force} \cdot \text{Distance}

What is the Work? What is the Force?

Work and Efficiency

- Sometimes work is lost
 - More work is put into a system that is actually done.
 - Where does it go?
Work and Efficiency

• Sometimes work is lost
 • More work is put into a system that is actually done.
 • Where does it go?

 Friction, Heat

• The efficiency can then be determined by:

\[
\text{Efficiency} = \frac{\text{Work Output}}{\text{Work Input}}
\]

Efficiency

• The ideal efficiency = 1
 • No work is lost
 • All work input translates to work output

• Most efficiencies range between 0 and 1

• Can efficiency be greater than 1???
Exercise – Weight Machine

While PUMPING UP you attempt to lift a 150 lb weight to a height of 2 feet.

If friction causes the loss of 60 in-lb of work,

1. How much work must you actually supply?

2. What is the efficiency of the exercise?

Power

- Power is the rate at which work is done

\[\text{Power} = \frac{\text{Work}}{\text{Time}} \]

- Units of Power
 - m-N/s or Joule/sec \quad \text{SI System}
 - ft-lbs/s \quad \text{US System}
Power

- James Watt
 - Invented the steam engine
 - Developed horsepower
 - Based on measure that an average horse can pull 330 lb up 100 ft in 1 minute
- Relations
 - 1 hp = 550 ft-lb/s US System
 - 1 Watt = 1 m-N/s = 1 Joule/s SI System

Exercise – Weight Machine

While pumping up you attempt to lift a 150 lb weight to a height of 2 feet.

If friction causes the loss of 60 in-lb of work,

3. How powerful are you if you perform the exercise in 2 seconds?

4. How do you compare to a horse (hp)?
System Exercise

Shaft Radius r
What considerations?
Find: Power Out

Motor
Hp, T, ω

Gear 1
N_1

Gear 2
N_2

W